翻訳と辞書
Words near each other
・ Product life-cycle management (marketing)
・ Product life-cycle theory
・ Product lifecycle
・ Product line extension
・ Product lining
・ Product literature
・ Product management
・ Product manager
・ Product market
・ Product marketing
・ Product measure
・ Product metric
・ Product Miniature Company
・ Product naming
・ Product naming convention
Product numerical range
・ Product of experts
・ Product of group subsets
・ Product of groups
・ Product of Imagination
・ Product of rings
・ Product of Society
・ Product of the 80's
・ Product operator formalism
・ Product optimization
・ Product order
・ Product Perfect
・ Product pipeline
・ Product placement
・ Product Placement (album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Product numerical range : ウィキペディア英語版
Product numerical range
Given a Hilbert space with a tensor product structure a product numerical range is defined as a numerical range with respect to the subset of product vectors. In some situations, especially in the context of quantum mechanics product numerical range is known as local numerical range
== Introduction ==

Let X be an operator acting on an N-dimensional Hilbert space \mathcal_N. Let \mathrm(X) denote its ''numerical range'', ''i.e.'' the set of all \lambda such that there exists a normalized state \in
\mathcal_N, || \psi || = 1, which satisfies X =
\lambda.
An analogous notion can be defined for operators acting on a composite Hilbert space with a tensor product structure. Consider first a bi–partite Hilbert space, \mathcal_N = \mathcal_K \otimes \mathcal_M ,
of a composite dimension N=KM.
Let X be an operator acting on the composite Hilbert space. We define the ''product numerical range'' \mathrm^\! \left( X \right) of X, with respect to the tensor product structure of \mathcal_N, as \mathrm^\! \left( X \right) = \left\
: \in \mathcal_K, \in \mathcal_M \right\},
where \in \mathcal_K and \in \mathcal_M are normalized.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Product numerical range」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.